3.848 \(\int \frac{\cos ^2(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=427 \[ \frac{(a (B-2 C)+3 b B) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{a^2 d \sqrt{a+b}}+\frac{b \left (a^2 B+2 a b C-3 b^2 B\right ) \tan (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (a^2 B+2 a b C-3 b^2 B\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^2 b d \sqrt{a+b}}+\frac{\sqrt{a+b} (3 b B-2 a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^3 d}+\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}} \]

[Out]

((a^2*B - 3*b^2*B + 2*a*b*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a -
 b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*b*Sqrt[a + b]*d) + ((3
*b*B + a*(B - 2*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt
[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*Sqrt[a + b]*d) + (Sqrt[a + b]*(
3*b*B - 2*a*C)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b
)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^3*d) + (B*Sin[c + d*x])/(a
*d*Sqrt[a + b*Sec[c + d*x]]) + (b*(a^2*B - 3*b^2*B + 2*a*b*C)*Tan[c + d*x])/(a^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[
c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.79253, antiderivative size = 427, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {4072, 4034, 4061, 4058, 3921, 3784, 3832, 4004} \[ \frac{b \left (a^2 B+2 a b C-3 b^2 B\right ) \tan (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (a^2 B+2 a b C-3 b^2 B\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^2 b d \sqrt{a+b}}+\frac{(a (B-2 C)+3 b B) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^2 d \sqrt{a+b}}+\frac{\sqrt{a+b} (3 b B-2 a C) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^3 d}+\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((a^2*B - 3*b^2*B + 2*a*b*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a -
 b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*b*Sqrt[a + b]*d) + ((3
*b*B + a*(B - 2*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt
[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*Sqrt[a + b]*d) + (Sqrt[a + b]*(
3*b*B - 2*a*C)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b
)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^3*d) + (B*Sin[c + d*x])/(a
*d*Sqrt[a + b*Sec[c + d*x]]) + (b*(a^2*B - 3*b^2*B + 2*a*b*C)*Tan[c + d*x])/(a^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[
c + d*x]])

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4034

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*n), x]
+ Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + A*a*(n +
1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b
- a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4061

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
(A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(
a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] +
(A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && Int
egerQ[2*m] && LtQ[m, -1]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx &=\int \frac{\cos (c+d x) (B+C \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\\ &=\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}}-\frac{\int \frac{\frac{1}{2} (3 b B-2 a C)-\frac{1}{2} b B \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx}{a}\\ &=\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}}+\frac{b \left (a^2 B-3 b^2 B+2 a b C\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{2 \int \frac{-\frac{1}{4} \left (a^2-b^2\right ) (3 b B-2 a C)+\frac{1}{2} a b (b B-a C) \sec (c+d x)-\frac{1}{4} b \left (a^2 B-3 b^2 B+2 a b C\right ) \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}}+\frac{b \left (a^2 B-3 b^2 B+2 a b C\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{2 \int \frac{-\frac{1}{4} \left (a^2-b^2\right ) (3 b B-2 a C)+\left (\frac{1}{2} a b (b B-a C)+\frac{1}{4} b \left (a^2 B-3 b^2 B+2 a b C\right )\right ) \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}-\frac{\left (b \left (a^2 B-3 b^2 B+2 a b C\right )\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=\frac{\left (a^2 B-3 b^2 B+2 a b C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{a^2 b \sqrt{a+b} d}+\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}}+\frac{b \left (a^2 B-3 b^2 B+2 a b C\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{(b (3 b B+a (B-2 C))) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 a^2 (a+b)}-\frac{(3 b B-2 a C) \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx}{2 a^2}\\ &=\frac{\left (a^2 B-3 b^2 B+2 a b C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{a^2 b \sqrt{a+b} d}+\frac{(3 b B+a (B-2 C)) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{a^2 \sqrt{a+b} d}+\frac{\sqrt{a+b} (3 b B-2 a C) \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{a^3 d}+\frac{B \sin (c+d x)}{a d \sqrt{a+b \sec (c+d x)}}+\frac{b \left (a^2 B-3 b^2 B+2 a b C\right ) \tan (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 19.4106, size = 1613, normalized size = 3.78 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*((-2*b*(b*B - a*C)*Sin[c + d*x])/(a^2*(-a^2 + b^2)) + (2*(-(b^3*B*Sin[c
 + d*x]) + a*b^2*C*Sin[c + d*x]))/(a^2*(a^2 - b^2)*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(3/2)) - ((
b + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*Sqrt[(a + b - a*Tan[(c + d*x)
/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(a^3*B*Tan[(c + d*x)/2] + a^2*b*B*Tan[(c + d*x)/2] - 3
*a*b^2*B*Tan[(c + d*x)/2] - 3*b^3*B*Tan[(c + d*x)/2] + 2*a^2*b*C*Tan[(c + d*x)/2] + 2*a*b^2*C*Tan[(c + d*x)/2]
 - 2*a^3*B*Tan[(c + d*x)/2]^3 + 6*a*b^2*B*Tan[(c + d*x)/2]^3 - 4*a^2*b*C*Tan[(c + d*x)/2]^3 + a^3*B*Tan[(c + d
*x)/2]^5 - a^2*b*B*Tan[(c + d*x)/2]^5 - 3*a*b^2*B*Tan[(c + d*x)/2]^5 + 3*b^3*B*Tan[(c + d*x)/2]^5 + 2*a^2*b*C*
Tan[(c + d*x)/2]^5 - 2*a*b^2*C*Tan[(c + d*x)/2]^5 + 6*a^2*b*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b
)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] -
6*b^3*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b -
a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 4*a^3*C*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]
+ 4*a*b^2*C*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a +
b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 6*a^2*b*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]]
, (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[
(c + d*x)/2]^2)/(a + b)] - 6*b^3*B*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]
^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 4*a^3*C*
EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqr
t[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 4*a*b^2*C*EllipticPi[-1, -ArcSin[Tan[(c + d
*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 +
 b*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*(a^2*B - 3*b^2*B + 2*a*b*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[
(c + d*x)/2]^2)/(a + b)] - 2*a*(a + b)*(-(b*B) + a*C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqr
t[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/
(a + b)]))/(a^2*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)*Sqrt[1 + Tan[(c + d*x)/2]^2]*(a*(-1 + Tan[(c + d*x)/2
]^2) - b*(1 + Tan[(c + d*x)/2]^2)))

________________________________________________________________________________________

Maple [B]  time = 0.388, size = 2871, normalized size = 6.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-1/2/d/a^2/(a+b)/(a-b)*4^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(B*a^3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1
/2))-3*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d
*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3*sin(d*x+c)+4*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3*sin(d*x+c)-2*C
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*a^3*sin(d*x+c)+6*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3*sin(d*x+c)-6*B*cos(d*x
+c)*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticP
i((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b+2*B*cos(d*x+c)*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1
/2))*b+2*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(co
s(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)
/(a+b))^(1/2))*a*b^2+2*C*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*C*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^
(1/2))*sin(d*x+c)*cos(d*x+c)*a^2*b+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-3*B*sin(d*x+c)*
cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-4*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b
^2-2*C*cos(d*x+c)*a*b^2-B*cos(d*x+c)^3*a*b^2+3*B*cos(d*x+c)^2*a*b^2-2*C*cos(d*x+c)^2*a^2*b+B*cos(d*x+c)^3*a^3-
B*cos(d*x+c)^2*a^3-3*B*cos(d*x+c)^2*b^3+3*B*cos(d*x+c)*b^3+B*cos(d*x+c)^2*a^2*b-B*cos(d*x+c)*a^2*b-2*B*cos(d*x
+c)*a*b^2+2*C*cos(d*x+c)*a^2*b+2*C*cos(d*x+c)^2*a*b^2+2*C*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*C*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)-2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)+6*B*sin(d*x+c
)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+
cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3+B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-3
*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+4*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b)
)^(1/2))*a^3-2*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-6*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))
*a^2*b*sin(d*x+c)+2*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipt
icF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)+2*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*s
in(d*x+c)+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*sin(d*x+c)-3*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*sin(d*x+c)-
4*C*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticP
i((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a)/(b+a*cos(d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + B \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )\right )} \sqrt{b \sec \left (d x + c\right ) + a}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2*sec(d*x + c)^2 + B*cos(d*x + c)^2*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d
*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)